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Stability analysis and charts for slopes
susceptible to translational failure

Hisham T. Eid, Azza M. Elleboudy, Hazem G. Elmarsafawi, and Amani G. Salama

Introduction

The generic terms, slope failures or landslides, embrace

Abstract: The aim of this paper is to develop two- and three-dimensional stability charts for slopes susceptible to
translational failure. An extensive parametric study was conducted using a slope model that is designed to simulate
field conditions with respect to configurations of the sliding mass, and unit weight and shear strength of the involved
materials. Slopes subjected to different conditions of pore-water pressures and seismic forces were considered in the
study. The study shows the special importance and difficulties of considering the end effects in the analysis of
translational slope failures and suggests a method for quantifying and incorporating them. Charts presented in this pa-
per do not require an iterative procedure in determining factor of safety. They give the practicing geotechnical engineer
a fast and reliable method to estimate the two and three-dimensional factors of safety for slopes susceptible to
translational mode of failure and to back-calculate the mobilized shear strength of materials involved in slope failures
following such mode. Numerical examples are given to illustrate different uses of these charts.
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Résumé : Le but de cet article est de développer des diagrammes de stabilité 4 deux et trois dimensions pour des talus
susceptibles d’atteindre la rupture par translation. On a conduit une vaste étude paramétrique au moyen d’un modele de
talus qui est congu pour simuler les conditions de terrain en fonction des configurations de la masse en mouvement, du
poids volumique et de la résistance au cisaillement des matériaux impliqués. Dans cette étude, on a considéré des talus
soumis a différentes conditions de pressions interstitielles et de forces séismiques. L’étude montre 1I’'importance particu-
liere et les difficultés de prendre en considération les effets des extrémités dans 1’analyse des ruptures par translation et
suggere une méthode pour les quantifier et les incorporer. Les diagrammes présentés dans cet article ne requicrent pas
de procédure d’itération pour déterminer le coefficient de sécurité. Ils donnent & I’ingénieur praticien en géotechnique
une méthode rapide et fiable d’estimer les coefficients de sécurité pour des pentes a deux et trois dimensions suscepti-
bles au mode de rupture par translation et de calculer a rebours la résistance au cisaillement mobilisée des matériaux
impliqués dans les ruptures de talus selon chaque mode, On donne des exemples numériques pour illustrer différentes
utilisations de ces diagrammes.

Mots clés : analyse de stabilité des talus, rupture par translation, analyse bidimensionnelle, analyse tridimensionnelle,
forces séismiques.

[Traduit par la Rédaction]

tively planar shear surface and predominantly translational
slide movement.

Figure 1 shows the three types of translational sliding

those down-slope movements of soil or rock masses that oc-
cur primarily as a result of shear failure at the boundaries of
the moving mass. Slopes slide in two basic modes, rotational
and translational. Unlike rotational slides, translational slides
usually result from the presence of a heterogeneity located
beneath the slope surface in the form of a strong material
underlain by a weaker one. Such a situation creates a rela-
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modes for slopes, namely, slab-sheet, block, and wedge slide
types. Slides of the slab-sheet type commonly occur in
weathered colluvial material or residual soil associated with
high water level having a sliding mass with depth to length
ratio of less than 0.12 (Skempton 1953). Slides through
composite cover systems of waste disposal facilities also be-
long to this category. Case histories of slab-sheet slides were
described by several researchers (e.g., Vargas and Pichler
1957; Hutchinson 1967; Scranton 1996). Cases of block
slides were also reported in the literature (e.g., McCallum
1930; Esu 1966; Elleboudy 1985). In these slides, the in-
volved block separates from its jointed parent rock mass,
usually sandstone or limestone, and slides as a unit on a
well-defined plane of weakness formed by filled joint, bed-
ding plane, or wet shale layer surface. Existence of water
plays an important role by reducing shear strength along the
block base and (or) exerting thrust forces in infiltrated joints.
The third type of translational sliding mode is the wedge
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Fig. 1. Types of translational sliding modes for slopes.
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slide. The name indicates the possibility of dividing the slid-
ing mass into a middle wedge surrounded by active and pas-
sive wedges at the slope back and toe, respectively (Fig. 1c¢).
This type is distinguished from the other two types by the
significant contribution of shear strength of the upper (stron-
ger) material in slope stability. Higher shear strength is mo-
bilized along the back scarp and sides of the sliding mass
compared to that mobilized along its base. Low shear
strength at the base usually results from sliding through a
preexisting failure surface along which residual shear
strength is mobilized in soils (e.g., Gretton embankment fail-
ure (Chandler and Pachakis 1973); Maymont slide (Krahn et
al. 1979); Gardiner Dam movement (Jaspar and Peters
1979); the Denholm landslide (Sauer and Christiansen
1987); Portuguese Bend slide (Ehlig 1992); Oceanside
Manor slide (Stark and Eid 1992); Cincinnati landfill slide
(Eid et al. 2000)). Low shear strength can also be mobilized
along the geosynthetic interface of landfill liner systems
(e.g., Kettleman Hills waste repository slide (Seed et al.
1990; Byrne et al. 1992)).

Slides of the wedge type occur more frequently and need
lengthy analysis compared to the other two translational
slide types that can be analyzed using the simple infinite
slope stability concept. The end effects are usually ignored
in the analysis of slab-sheet and block slides because of the
shallow depth of sliding mass and the possible joint exis-
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tence at sides of the sliding blocks, respectively. As a result,
the study presented in this paper focuses on developing two-
dimensional (2D) and three-dimensional (3D) stability charts
for slopes susceptible to the wedge type of translational fail-
ure through conducting an extensive parametric study. In ad-
dition, the general name of the failure mode “translational”
is used to refer to this type throughout the rest of this paper.

Existing stability charts

Stability charts for slopes susceptible to translational fail-
ures or failures along bilinear and trilinear slip surfaces are
limited in the literature compared to those dealing with the
rotational mode of failure such as the 2D stability charts pre-
sented by Taylor (1937), Bishop and Morgenstern (1960),
Bell (1966), O’Connor and Mitchell (1977), Cousins (1978),
and Michalowski (2002) and the 3D stability ones presented
by Baligh and Azzouz (1975), Leshchinsky and Baker
(1986), Gens et al. (1988), and Madej and Gajewski (1988).
In addition, the use of the available charts for translational
mode is restricted because they are developed for narrow
ranges of material properties and sliding mass configura-
tions.

Montés et al. (1996) presented charts to determine both
the minimum 2D factor of safety (F,p) and the correspond-
ing trilinear slip surface of slopes in cohesive soils. For the
particular condition of short-term stability (i.e., ¢ = O condi-
tion), an explicit formula was presented to calculate the fac-
tor of safety. Simplified Janbu approach (Janbu et al. 1956)
was used in developing charts for cases of homogenous and
stratified soil, with each layer having its own distinct un-
drained shear strength. The 2D slope model that was utilized
by Montés et al. (1996), and reformed to the special case
profile similar to that shown in Fig. 1¢ with cohesion of up-
per and lower soils of ¢; and c,, respectively, is shown in
Fig. 2a. It can be seen that the proposed critical slip surface
has a base centered on the vertical axis at midslope and in-
clined sides making an angle of 45° with respect to the hori-
zontal. Stability charts for cases of cohesion ratio, i.e., ¢,/cy,
of 0.2, 0.6, and 1.0 were presented.

Qian et al. (2003) presented charts to calculate F,y, against
translation failure for waste landfill slopes. The 2D slope
model and material properties utilized in the analysis are
shown in Fig. 2b. A two-part wedge analysis was developed
and used to calculate F,p for the slope model or the pro-
posed waste—liner configuration. Existence of pore-water
pressure was not considered in the analysis. The cohesion
() of the waste and the interface adhesion of the liner com-
ponent surfaces—if any—were omitted in this analysis due
to the uncertainty in the values of these parameters. Further-
more, ignoring them simplified the analysis and led to con-
servative calculated factor of safety.

Lovell (1984) presented a chart for determining the 3D
factor of safety (F;p) against translational slope failure. The
chart was developed based on software that utilizes a method
of columns as an extension to the method of slices in 2D
analysis. The 3D slope model and material properties used
in the analysis and the corresponding developed charts are
shown in Fig. 2c¢. It can be seen that the shear strength of the
lower (weaker) layer was assigned a constant value (¢’ =
9.6 kPa) while that of the upper (stronger) layer was ex-
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Fig. 2. Slope models and material properties utilized to develop
existing stability charts.

o e
T (e

C,
—=0.2,0.6,and 1.0
C1

7
7

7
N 7
T
- 7

H N - v

Soil 1 (¢;,y) "~ i |
l 1 N s,

Soil 2 (¢,, 7) |

s

(a) Slope of cohesive soils (modified from Montés et al. 1996)

A%Y
7L
85 =15°| Min. friction angles beneath
=200 | act d passive wed;
8p =20 active and passive wedges wedge /
bgw=30° ] Waste //
¥ = 102XN/m3 ] properties | /K "
a1 Waste /
/
B=184° Passive | /
o=11° wedee /™\P
— - 7L
-
Liner

D
T =025,0.5,1.0,and 2.0
a=1,B=0°andy=90°
Upper (stronger) soil
c=479kPa, $=0°
c=0kPa,$=35°
Passive
Lower (weaker)soil ~ Wedge
c=9.6kPa

Central
block

(c) Three-block model (modified from Lovell 1984)

§=17°

B =11.3°18.4° and 45°
Upper (stronger) soil
c=0, $=30°,y=17kN/m
Lower (weaker) soil
¢=0, ¢ =variable, y = 18 KN/mi®

3

Shear resistance
along vertical side

(d) Model with uniform cross sections
(modified from Arellano and Stark 2000)

Can. Geotech. J. Vol. 43, 2006

pressed in two alternatives only. Groundwater was not in-
cluded in the analysis. In addition, the sides of the sliding
mass were taken to be vertical.

Stark and Eid (1998) showed that commercially available
3D slope stability software has an inherent limitation that
leads to underestimation of F;p for a translational failure
mode. The software divides the sliding mass into vertical
columns. The resisting forces are calculated by considering
only the material shear strength along the base of each col-
umn. As a result, the shear resistance due to cohesion and
(or) friction generated by the earth pressure on vertical sides
of the sliding mass is ignored. In translational failures, verti-
cal sides provide the minimum amount of shear resistance
because the effective normal stress acting on these sides is
only due to the lateral earth pressure and a vertical side pro-
duces the minimum area of shear surface. As a result, case
histories of translational failure usually exhibit vertical sides
of sliding mass. Consequently, this software limitation leads
to significant underestimation of the F;p in case of
translational failures. In addition, it results in overestimation
of the back-calculated shear strength of the materials in-
volved in a slope failure. Using a cumbersome technique to
overcome this limitation and considering shear resistance
due to mobilization of the at-rest earth pressure on the two
parallel vertical sides of the sliding mass, Stark and Eid
(1998) showed that this overestimation in 3D back-
calculated friction angles for a translational failed slope can
be as large as 30%.

In a further study of the importance of 3D slope stability
analyses in practice, Arellano and Stark (2000) used a more
direct technique to overcome the software limitation by ap-
plying an external force equivalent to the shear resistance
due to the at-rest earth pressure acting at the centroid of
each of the two vertical sides of a slope model. Figure 2d
shows this model and the material properties utilized in the
study. One value for each of the unit weight and the friction
angle for the upper material and the unit weight and the sur-
face inclination angle of the lower material was utilized in
the study. It should be noted that the slope model is simpli-
fied to comprise a sliding surface passing through the crest
and toe of the slope and a water table located at the
midheight of the slope. The model is not rounded at the head
scarp and exhibits a uniform cross section across the slope
that yields the same F,p. Consequently, the F5p obtained
from an analysis performed without considering the shearing
resistance along the vertical sides of the sliding mass is simi-
lar to that corresponding to 2D analysis.

Method of analysis

As previously mentioned, a translational sliding mass can
be divided into three wedges separated by vertical bound-
aries. The middle wedge is surrounded at the crest and toe of
the slope by two wedges assumed to be in active and passive
states, respectively. Based on Rankine’s theory and having
Oy representing the friction angle of the upper material, two
shear planes inclined at angles of 45 + ¢/2 and 45 — ¢/2
with the horizontal can be drawn reflecting these two stress
conditions, respectively. Because of this wedged nature, two
methods of wedge analysis are usually considered, in addi-
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tion to the method of slices, in limit equilibrium analysis of
translational failure. The first one is the simple wedge
method (Lambe and Whitman 1969) in which the stability of
the middle wedge is considered in calculating F,p, while rep-
resenting the effect of the surrounding wedges simply by the
active and passive earth pressure forces. The second one is
the wedge method proposed in NAVFAC (1971) in which
shear strengths along the slip surfaces of the active and pas-
sive wedges are considered, in addition to the earth pressure
forces, in the stability of the middle wedge. For the pro-
posed slope conditions, Fig. 3 shows factors of safety calcu-
lated using these two wedge methods compared to those
calculated using method of slices and employing Spencer’s
stability procedure (Spencer 1967). Spencer’s method as-
sumes that the resultant interslice forces have the same incli-
nation throughout the sliding mass. Both force and moment
equilibriums are satisfied in Spencer’s method. This method
is regarded as being accurate, i.e., within 6% of the correct
2D factor of safety (Duncan 1992). This statement is espe-
cially true for the translational failure mode in which the in-
clination of the interslice forces within the major part of the
slope is nearly constant.

It can be seen from Fig. 3 that the simple wedge method
overestimates the calculated F,p while the NAVFAC (1971)
wedge method underestimates it. The error magnitude is en-
hanced for higher values of H,/H,, where H; and H, are de-
fined as the vertical distances from the point at which
surface of the weaker material passes beneath the crest and
toe of the slope, respectively. The error is significant even in
case of low values of weaker material friction angle (¢;) that
usually causes translational failures. As a result, neither of
these two methods was used in the current parametric study
in spite of their simplicity in 2D stability analysis. Spencer’s
method of slices utilized in the slope stability computer pro-
gram UTEXAS3 (Wright 1992) was employed in all of the
2D stability analyses conducted to develop the 2D stability
charts presented in this study.

The available 3D slope stability software do not utilize a
3D extension of Spencer’s method. They utilize the exten-
sions of Bishop’s and Janbu’s methods of slices (Bishop
1955; Janbu et al. 1956). Bishop’s simplified method was
originally derived for a rotational failure mode. It neglects
vertical interslice forces and calculates the factor of safety
based on moment equilibrium, while horizontal force equi-
librium is neglected. Janbu’s simplified method assumes that
the resultant interslice forces are horizontal. The factor of
safety is calculated based on force equilibrium, while mo-
ment equilibrium is not satisfied. As a result, Janbu’s simpli-
fied method was utilized in 3D stability analysis conducted
in this study because it is more suitable for a translational
failure mode. Because it is user friendly and has more capa-
bility in describing external loads and performing 2D analy-
sis out of 3D data file, the slope stability program CLARA
2.31 (Hungr 1988) was used for the 3D stability analyses de-
scribed in the present paper. The program utilizes an exten-
sion of Bishop’s and Janbu’s simplified methods of slices.
The CLARA 2.31 program was not used in 2D stability
analysis except in the case of comparing F;p to F,p. In this
case, both of the safety factors were determined using the
same program (CLARA 2.31) and method of slices (Janbu’s
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Fig. 3. Two-dimensional factors of safety determined using sim-
ple wedge and NAVFAC (1971) wedge methods. These are com-
pared to the factors of safety determined using the method of
slices.
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simplified method) to have compatible values. It should be
noted also that the calculated F;p and the corresponding F,p
that were determined using the same method were dealt with
throughout the analysis and charts presented in this paper as
a ratio (Fsp/F,p). This assures data consistency even when
using the 2D stability charts—developed utilizing Spencer’s
method—in conjunction with the 3D stability charts (i.e.,
F;3p/F,n charts)—developed utilizing Janbu’s simplified
method—for the analysis of the same slope.

Design of slope model for parametric study

A slope model was designed and employed to conduct the
parametric study needed for the development of 2D and 3D
stability charts. A number of field case histories that experi-
enced translational failure were studied to design the slope
model so that it simulates field conditions with respect to
sliding mass configurations, pore-water pressures, and mate-
rial properties. Figures 4a, 4b, 4c, and 4d show a 3D view,
plan, critical cross section, and near side cross section of this
model, respectively. The model represents a sliding mass,
with similar critical cross sections (Fig. 4c¢), that is rounded
at the ends of its back scarp creating a group of noncritical
near side cross sections and bounded by two vertical sides at
a distance W (slope width). Case histories in which curved
surfaces that connect the inclined back scarp to the two ver-
tical sides of sliding mass have been reported by several re-
searchers (e.g., Bromhead 1986; Stark and Eid 1998).

It can be seen that this model is distinguished from those
used in previous studies in several aspects that make it more
representative of field case histories and more generic. For
the 3D condition, the model incorporates vertical sides and
rounded ends of back scarps. For both 2D and 3D condi-
tions, it considers the possibility of locating the weak mate-
rial at a depth H, below the slope toe and having a top width
for the sliding mass. As will be shown subsequently, this
width depends on the slope geometry and material properties
that lead to a back scarp the bottom of which is not neces-
sarily an orthogonal projection of the slope crest line. These
conditions were frequently reported for translational slope
failures (e.g., Skempton and Petley 1967; Chandler et al.
1973; Cruden et al. 1991) but not represented by one model
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Fig. 4. Slope model used in the analysis: (a) 3D view; (b) plan
view; (c¢) section A—A’ representing critical cross sections;
(d) section B-B’ representing the vertical sides of the model.
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in the literature. The sliding surface is taken to consist of a
back scarp that is inclined at 45 + ¢/2 with the horizontal,
connected to the bottom part that extends 0.1 m into the
lower material and runs parallel to its surface until it rises at
45 — ¢ /2 starting from a point directly below the toe to day-
light (Figs. 4c¢ and 4d). Values of 0, 0.25, and 0.50 are as-
signed for H,/H, in this study. Slope angle (B) is taken to be
either 10°, 20°, or 30°. The weaker material surface is as-
sumed to have an inclination () of 0°, 3°, and 6° to simulate
natural bedding planes, commonly encountered preexisting
slip surfaces, or the nearly horizontal part of landfill liner
systems.

Reported case histories showed that translational failure
often involves a drained shearing condition, i.e., long-term
failure condition. Sliding in which drained residual shear
strength is mobilized along a preexisting shear surface over-
lying stiff fissured clay that mobilizes drained fully softened
shear strength is a typical translational failure case (Eid
1996). For this reason, shear strength of the upper (stronger)
and lower (weaker) materials of the slope model were ex-
pressed only in terms of friction angles ¢y and ¢, respec-
tively, considering a linear drained shear strength envelope
that passes through the origin. In case of nonlinear drained
failure envelopes, ¢y and ¢; can represent the secant friction
angles of linear envelopes formed by connecting the origin
and the shear strengths at the average effective normal
stresses acting on the failure surface portions slipping
through the upper and lower materials, respectively.

Ranges of values for ¢; and ¢ utilized in the analysis are
taken to be consistent with those reported for fully softened
and residual friction angles, respectively. Consequently, val-
ues of friction angles higher than 35° were not considered
because they exceed the upper limit of both the drained fully
softened and residual friction angles reported for natural
soils at ranges of average effective normal stress usually en-
countered in slope failure case histories (Skempton 1985;
Mesri and Cepeda-Diaz 1986; Mesri and Abdel-Ghaffar
1993; Stark and Eid 1994, 1997). In addition, the minimum
value assigned for ¢ was 4°. Unit weights of the upper and
lower materials (y) are assumed to be the same and equal to
14, 17, or 20 kN/m>. The low value of unit weight is in-
cluded in the parametric study to cover cases of waste land-
fill slopes. It should be noted that failure of such slopes can
involve shearing either along the soil-waste interface, liner
components interfaces, or through the waste material, the
shear strengths of which are mostly covered by the friction
angle range considered in this study (Stark and Peoppel
1994; Kavazanjian et al. 1995; and Eid et al. 2000, respec-
tively).

Pore-water pressure representation

Two methods were considered for representation of the
pore-water pressures in the slope model used in the paramet-
ric study. The first method introduces water table elevations
or peizometric surfaces; and the second method uses the
pore-water pressure ratio (r,) as described by Bishop and
Morgenstern (1960). Pore-water pressure ratio at a point is
defined as the magnitude of pore-water pressure divided by
the total stress at this point. Using r, is a crude manner of
accounting for the presence of water in a slope. Barnes
(1999) showed that using a single r, value to represent the
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global pore-water pressure condition may lead to significant
errors in slope stability analysis of circular failures. The er-
ror magnitude depends on the slope angle, the cohesion of
soil and, to a lesser extent, the friction angle value. The
technique used by Barnes (1999) was adopted in this study
to figure out if the same conclusion could be drawn for the
translational failure mode. For an example slope of inclina-
tion 3H:1V, values of the ratio of water height (Hy) to the
slope height (H) were plotted against the corresponding val-
ues of both the average r, proposed by Bishop and
Morgenstern (1960), and equivalent r, that gives the same
factor of safety. The results are shown in Figs. 5a and 5b,
respectively. Comparing the results of the two figures shows
that, except for values of Hy/H equal to 0 and 1.0, using one
average value for r, overestimates the pore-water pressures.
This overestimation increases with a decrease in ¢. The
study also showed that this overestimation is not sensitive to
values of ¢; or B. To avoid this error and its consequences
in stability analyses, pore-water pressures were represented
in the slope model used in the present parametric study by
introducing water table elevations. Groundwater tables hav-
ing linearly decreasing heights and maintaining constant
value of Hw/H (i.e., equal values of Hy,/H; and Hy,/H,)
are used for the slope model. Variables Hy; and Hyy, are de-
fined as the water heights near the slope crest and toe, re-
spectively. Values for Hy/H of 0, 0.4, and 0.8 were utilized
in the analyses.

Top width of critical sliding mass

As shown in Fig. 4, the location at which the critical slip
surface daylighted behind the slope crest, i.e., top width of
critical sliding mass (X), should be determined to define the
configuration of the slope model. A supplementary 2D para-
metric study was conducted to develop a chart to determine
X values leading to the minimum factor of safety based on
material properties and slope geometry parameters. A
searching technique was used to quantify the effect of these
properties and parameters on the location of the critical slip
surface. An example of the search procedure used for locat-
ing the critical slip surface is shown in Fig. 6a. The study re-
vealed that X is insensitive to values of ¢ and 8. On the
other hand, it increases with increasing values of B and
H,/H,, and decreasing values of ¢ (Fig. 6b). It can be noted
also that, for the proposed configurations and shear strength
conditions, the commonly used simple bilinear critical slid-
ing surface that passes through the slope crest and toe can
only be developed if the lower soil passes through the slope
toe, i.e., H, = 0. Development of X is directly proportional to
the value of H, because a larger driving force is needed to be
built up by shifting the back scarp a distance behind the
slope crest to counter the enhanced passive resisting forces
created by increasing H,.

Cracking that appears on slope top and delineates the ex-
tent of sliding mass behind the crest, i.e., value of X, is usu-
ally the first failure sign. This is supported by observations
reported in the literature describing translational failure case
histories (e.g., Stark et al. 2000). This may interpret the in-
sensitivity of X to the value of ¢y, which mainly controls the
back-scarp inclination when the failure progresses down
through the upper layer (Figs. 4c and 6b).
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Fig. 5. Average and equivalent pore-water pressure ratios for
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The relationship shown in Fig. 6b is recommended for lo-
cating the critical slip surface for simple slopes as a neces-
sary step to estimate the minimum factor of safety against
translational failure. In addition, it provides the slip surface
location that is needed as an initial input to start a more so-
phisticated automatic search for locating the critical slip sur-
face of complicated slopes susceptible to translational
failure.

Two-dimensional stability charts

Most slope stability analyses are performed using 2D
limit equilibrium analysis because of its relative simplicity
compared to 3D analysis. In addition, 2D analysis yields a
conservative estimate for the factor of safety because the end
effects are not included. While the use of software has su-
perseded most graphical methods, charts for 2D slope stabil-
ity analysis are still routinely used in practice. The charts
presented in this section were developed to help in such pur-
pose for the translational mode of failure. The parametric
study used to develop the charts was conducted utilizing the
2D critical cross section of the slope model shown in
Fig. 4c. To calculate the minimum factor of safety for this
cross section, values of parameters H,, H,, B, 8, ¢, and y
were first assumed. Using the chosen parameters, the value
of top width of the critical sliding mass was determined and
the corresponding F,p was then calculated. This procedure
was repeated using a variety of slope parameters.

Slopes with B < 10° were not considered because they
rarely experience stability problems. In addition, slopes with
B that are equal to, or higher than, the maximum utilized
value of ¢y, i.e., 35°, were not analyzed because the infinite
slope failure mode rather than the translational mode would
govern F,n in such a condition. The same concept was also
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Fig. 6. Top width of critical sliding mass (X).
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followed in developing the 3D stability charts presented in
the subsequent section.

The analysis revealed that F, depends on the ratio of H,
to H, rather than on their absolute values. As a result, the 2D
stability charts developed in this study are grouped for cases
of H,/H, of 0, 0.25, and 0.50 as presented in Figs. 7, 8, and
9, respectively. The same scale was used in all of the charts
for easy comparison of the effect of different parameters. It
should be noted that F,n in these charts is presented as a
function of the ratio of tan ¢; to tan ¢;. Consequently, deter-
mining F,n does not require any iterative procedure because
this ratio is independent of the safety factor that is equal for
both ¢ and ¢y. This concept of utilizing a parameter in
which the nominator and denominator include the safety fac-
tor in such a way that leads to its cancellation from both of
them was first introduced by Bell (1966) for developing
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charts for rotational failure of slopes in which the safety fac-
tor is applied to both ¢’ and tan ¢’.

The charts of Figs. 7, 8, and 9 show that F, increases
with increasing values of H,/H,, ¢;, and 7, and decreasing
values of Hy, B, and 3. They also show that the effect of flat-
tening the slope to increase the factor of safety decreases in
cases of low ¢ to ¢ ratio. This is indicated by the converg-
ing nature of F,p at low values of tan ¢ /tan ¢y;. Results
also show that F, increases with increasing value of ¢y.
The influence of changing y (within the utilized range) on
F,p values decreases with increasing 3 and §, and decreasing
Hy; values. For dry slopes, i.e., Hy/H = 0, this effect is not
significant and consequently not shown on charts (Charts a,
b, and c in Figs. 7, 8, and 9). This may be attributed to the
balanced effect of changing v, i.e., changing the sliding mass
weight, on both the driving and the resisting forces mobi-
lized along the shear surface in such a way that F, remains
almost the same. Having a high water table mainly reduces
the weight imposed on the nearly horizontal part of the slid-
ing surface on which the major part of the resisting forces
against translational failure is mobilized. This reduction in
weight and the associated decrease in resisting forces caused
by having a submerged part of the sliding mass is more sig-
nificant in case of low unit weights. As a result, F,, against
translational failure decreases with the decrease in unit
weight of the sliding materials that are partly or wholly sub-
merged below the water table. Due to differences in failure
mode and mechanism, this conclusion is contrary to that
reported by several researchers (e.g., Taylor 1937; Singh
1970; Michalowski 2002) for the effect of decreasing y on
F,p against rotational failure for all of the pore-water pres-
sure conditions.

Three-dimensional stability charts

The 2D limit equilibrium methods calculate the factor of
safety against failure for a slope assuming a plane-strain
condition that ignores the shear resistance along the sides of
the sliding mass. Slopes failing in a translational mode ex-
hibit the most pronounced difference between F,; and F3p
because of the large difference between the mobilized shear
strength along the back scarp and sides of the sliding mass
and that along the base. In addition, a translational failure
can occur in relatively flat slopes because of the low shear
strength of the underlying material. Chen and Chameau
(1983) and Leshchinsky et al. (1985) showed that the flatter
the slope, the greater the difference between F,n and Fip.
As a result, ignoring this additional resistance may lead to
overdesigned slopes and (or) overestimation of back-
calculated shear strength parameters of materials involved in
slopes that failed in a translational mode. The back-
calculated parameters can be used in remedial measures for
failed slopes or for slope design at sites with similar condi-
tions.

Using the slope model shown in Fig. 4, a parametric study
was conducted to develop charts relating the ratio Fsp/F,p to
slope geometry parameters and involved material properties.
The value of F,p used in these charts is that corresponding
to the most critical cross section, i.e., the cross-section with
the minimum F,p, which is shown in Fig. 4c. Charts are pre-
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Fig. 7. Two-dimensional stability charts for translational mode of failure for slopes with Hy/H; = 0.0.
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Fig. 8. Two-dimensional stability charts for translational mode of failure for slopes with H,/H, = 0.25.
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Fig. 9. Two-dimensional stability charts for translational mode of failure for slopes with Hy/H; = 0.5.
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sented also for slopes exposed to seismic forces. The
CLARA 2.31 slope stability program was used in these anal-
yses. Geometry data is input into the CLARA 2.31 program
through describing a series of 2D cross sections. The geo-
metrical configurations of the 3D model shown in Fig. 4
were described using two sections similar to the critical one
shown in Fig. 4c representing the middle part of the mass,
two sections similar to that shown in Fig. 4d representing
the vertical sides of the mass, and ten sections representing
the two rounded parts of the back scarp.

As with all of the commercially available 3D slope stabil-
ity analysis programs, the CLARA 2.31 program has an in-
herent limitation that ignores the shear resistance along the
sliding mass vertical sides. To overcome this limitation,
shear resistance along the two sides was included by impos-
ing a group of external horizontal and vertical forces (Fy and
F,) that are the components of the shear resistance forces
(F). Each shear resistance force was calculated by multiply-
ing the corresponding earth pressure force (E) acting perpen-
dicular to the vertical sides by the tangent of ¢;. Each earth
pressure force was estimated as the volume of the at-rest
earth pressure diagram imposed on the corresponding part of
the slope vertical side. The coefficient of earth pressure at
rest is taken as K, =1 —sin ¢;. Since the predominant move-
ment direction in translational failures is parallel to the sur-
face of the lower material, the shear resistance forces were
assigned such direction (Fig. 10a). To be imposed on the op-
posite direction, forces generated by pore-water pressures
were calculated using the same concept utilized for the shear
resistance forces (Fig. 10b). It should be noted that all of the
horizontal and vertical force components were imposed at
the centroids of their corresponding areas of the vertical
sides of sliding mass. This technique in quantifying and in-
corporating the end effects is different from that utilized by
Arellano and Stark (2000) in which the earth pressure forces
were approximated using the average vertical effective stress
over the depth of the sliding mass.

Figs. 11a, 11b, and 11c show the effect of sliding mass
geometry and material properties on the ratio F;p/F,p, for the
slope model with H,/H, equal to 0.0, 0.25, and 0.5, respec-
tively. The parametric study showed that Fsp/F,p is not sen-
sitive to the value of ¢. This conclusion agrees with data
presented by Arellano and Stark (2000) showing a slight in-
crease of the 3D effect with increasing ¢,/¢; ratio using a
constant ¢; = 30°. This can be interpreted in terms of the
overwhelming effect of ¢ over that of ¢; on the value of
F3p, which mainly increases because of the inclusion of the
shear resistance along the parallel vertical sides of sliding
mass. The magnitude of such resistance is directly propor-
tional to the value of ¢y.

The present study also showed that §, vy, and Hy have a
slight effect on F3p/F,p values. As a result, these parameters
were not included in the 3D stability charts. It can be seen
that for the same sliding mass F;p is greater than F,p of its
critical cross section regardless of slope geometry configura-
tions and values of the material properties. The 3D effect,
1.e., the Fsp/F,p value decreases with increasing W/H, ratios
for a given slope due to the domination of the increasing
weight of sliding mass and its corresponding driving forces
over the constant shear resistance along the parallel vertical
sides. Figure 11 also shows that for slopes with the same
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Fig. 10. Forces imposed on the vertical sides of slope model in
the stability analysis.

E: At rest earth pressure force
F: Shear resistance due to earth
pressure

E & F, : Water pressure forces

v

(b) Forces generated by water pressure

WIH,, B, and ¢ the 3D effect increases with increasing
H,/H, value. Increasing H,/H, magnifies the effect of chang-
ing B on the calculated F;p/F,n for slopes with the same
W/H, and ¢y, especially in cases of low values of W. This is
attributed to a greater shear resistance being developed
along the vertical sides due to the increase of their areas
with increasing H,/H, ratio.

Figure 11 also shows that the value of Fip/F,p increases
with decreasing . This can be attributed also to the enlarge-
ment of the vertical side area, especially at the middle
wedge of flatter slopes, which leads to relatively greater
shear resistance along the sides and consequently a higher
3D effect. The figure also shows an increase of the 3D effect
with increasing value of ¢y;. This value influences the mag-
nitude of shear resistance along the vertical sides of sliding
mass in two opposite ways. Higher ¢; leads to a lower value
of the at-rest coefficient used in calculating earth pressure
forces that are applied perpendicular to the vertical sides. On
the other hand, it leads to a higher value of shear strength
coefficient (tan ¢y;) by which the earth pressure forces are
multiplied to estimate the shear resistance along those sides
(Fig. 10). For the slope conditions considered in this study,
the resultant of these two contrary influences yields a higher
shear resistance and consequently an increase of the 3D ef-
fect with increasing ¢ ;. Because of the difference in utilized
failure mode and shear strength representation, this type of
resultant influence of ¢y on the 3D effect is not in agree-
ment with that reported by several researchers (e.g., Chen
1981; Lovell 1984; Duncan 1996; Farzaneh and Askari
2003) of a decrease in the importance of 3D analysis with
the increase of the value of friction angle (¢") for circular or
log-spiral slips through homogenous or nonhomogenous
soils, the shear strength of which is described using both
friction angle and cohesion.

Utilizing the charts shown in Figs. 6b, 7, 8, 9, and 11
leads to a complete definition of the 3D geometrical config-
uration of potential critical sliding mass if the parameters J3,
oy, o1, 7 O, Hy, H,, and Hy are known for the critical 2D
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Fig. 11. The effect of sliding mass geometry and material shear
strength on the ratio of Fsp to F,p for slope models with:
(a) Hy/H, = 0.0; (b) Hy/H, = 0.25; (c) H,/H, = 0.5.
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section that has F, < 1.0. The length of this critical mass
can be calculated once the value of X is determined using
Fig. 6b. The value of F,p is then estimated utilizing one of
Figs. 7-9 to be used in determining the width of the critical
mass utilizing Fig. 11 by assigning a value of 1.0 to F;p.
This analysis leads to describing a slope failure scenario that
starts with having sections where F,, < 1.0. For failure to
occur, the back scarp of a mass including these sections
should extend laterally to decrease the end effect relative to
the driving forces until a critical mass width is reached and
F3p = 1.0 is mobilized. This means that failure through regu-
lar slopes should have almost the same sliding mass width
that is equal to the critical mass width. This conclusion is
supported by width regularity of sliding masses described
for slope failures by several researchers (e.g., Bromhead
1986).

Pseudostatic seismic effect

Seismic loads acting on the slope model were considered
in the development of the charts shown in Fig. 12 by includ-
ing a pseudostatic force due to seismic acceleration. Forces
were imposed at the center of gravity of the proposed sliding
mass. Values of 0.1 and 0.2 were assigned to the coefficient
K, that represents the intensity of horizontal acceleration as
a fraction of gravity acceleration (g). For simplicity, the ratio
of the 3D factor of safety considering seismic loads (F3pgeis-
mic)) to the critical cross-section factor of safety without con-
sidering them (Fp or Fyp(yai,) was used for the charts
presented in Fig. 12 to illustrate the combined 3D and seis-
mic effects on the stability of slopes. Comparing the charts
of Fig. 12 to those of Fig. 11 shows that in spite of including
the effect of side shear resistance, consideration of the seis-
mic forces rendered the F3peismicy/F2p Tatio to be lower than
1.0 even for the relatively high values of H,/H,.

Considering the seismic effect led to a calculated ratio for
Fpseismicy/ Fop that is insensitive to the value of ¢y;. As a re-
sult, curves of different ¢; for each slope inclination [ used
in Fig. 11 were combined in Fig. 12 in one curve for that
slope due to seismic effect consideration. This means that,
for the range of parameters considered in this study, the
Fpseismicy/ Fap value is geometrically related and practically
does not depend on material properties. It should be noticed
also that Fjpeismic/Fop decreases  with decreasing 3
(Fig. 12). This can be attributed to the greater effect of ap-
plying seismic forces in reducing the 3D factor of safety in
case of lower slope angles. A similar conclusion can be
drawn from data presented by Michalowski (2002) for
slopes with log-spiral failure surfaces.

Numerical examples

The following four examples illustrate some uses of the
2D and 3D stability charts presented in this paper.

Example 1

Let a slope be comprised of soil whose ¢" = 30° and v =
20 kN/m?® placed on an existing horizontal layer of soil
with ¢" = 15°. Determining the slope inclination (B) that al-
lows for F,p = 1.5 against translational failure requires the
use of the chart in Fig. 7a. Using values of tan ¢; /tan ¢y =
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Fig. 12. The effect of sliding mass geometry on the ratio of
F3p(seismic) 1O Fapgstatic) for slope model subjected to pseudostatic

horizontal force: (a) H,/H; = 0.0; (b) H,/H, = 0.25; (¢) H,/H, = 0.5.
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tan15° tan30° =0.464 and Fp/tan ¢y =1.5/tan30°=2.6, we
read § = 25°.

Example 2

Let a 12 m high slope with a 20° inclination be cut in a
16 m thick layer of homogenous soil with ¢" = 35° and v =
20 kN/m? that is underlain by an extended layer of soil with
¢” = 10° and inclined surface of 3° down slope (i.e., 8= 3°).
Evaluating F,p that is the same for both ¢; and ¢ does not
require an iterative procedure. Using H,/H, = 4/16 = 0.25 and
tan ¢p /tan ¢y = tan10%tan35° = 0.252, we read in Fig. 8b
that Fop/tan ¢y = 2.36. This yields F,p=2.36 X tan35°=1.65.

Example 3

A slope failed in translational mode with the following
parameters: § = 10°, W/H, = 4, H,/H, = 0, Hy/H, = 0.4,
Oy = 25°, y= 17 kN/m?, 8= 0. Back-calculation of ¢, value
mobilized at failure requires the use of Figs. 11a and 7d.
From Fig. 11a we read Fip/F,p = 1.25. Since F5p = 1.0 at
failure, F,n = 1.0/1.25 = 0.8. With the given ¢y, B, and vy, we
read from Fig. 7d tan¢; /tan ¢y = 0.16, which gives ¢ =
4.3°. This means that the required lower soil friction angle
mobilized at failure (¢1 )0, = 4.3°. It should be noted that if
the 3D effect is not considered in this example, the back-
calculated friction angle (¢),., Will be overestimated to
5.8°, which is a result of using Fig. 7d with F, = 1.0.

Example 4

If the slope described in Example 3 has a ¢ of 10°, the
3D factor of safety under static and seismic (k;, = 0.1) condi-
tions can be calculated using Fig. 7d, which indicates a
value for F,, of 1.43, and then Figs. 11a and 12a, which in-
dicate F3p/Fop = 1.25 and Fipseismicy/Fap = 0.67, respec-
tively. This yields F3p = 1.25 x 1.43 = 1.79, and Fspeismic) =
0.67 x 1.43 = 0.96.

Conclusions

A set of 2D and 3D stability charts was produced for
slopes susceptible to translational failure based on an exten-
sive parametric study. The presented charts do not require an
iterative procedure in estimating factor of safety. They are
also unlike the few available ones dealing with translational
failure mode by being more comprehensive concerning the
utilized sliding mass configurations, material unit weight
and shear strength parameters, pore-water pressure and load-
ing conditions, and method of quantifying and incorporating
the 3D end effect, which is especially important for stability
analysis of slopes failing in such mode. The following re-
sults are concluded and interpreted based on the 2D and 3D
slope stability analyses performed in the parametric study.
(1) The simple wedge method overestimates F, against

translational failure, while the NAVFAC (1971) wedge
method underestimates it. The error magnitude is en-
hanced for higher values of H, and ¢; and insensitive to
values of B and ¢y.

(2) Using one average value for r, overestimates the pore-
water pressures and consequently leads to underestima-
tion of F,p. This error increases with a decrease in ¢y.
As a result, representing pore-water pressure by intro-
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ducing water table elevations is recommended for
translational failure analysis of slopes.

(3) The top width of the critical sliding mass increases with
increasing values of B and H,/H, and decreasing values
of ¢p. It is insensitive to values of & and ¢;. The width
should be determined before any further stability analy-
sis because it defines the critical slip surface location. A
chart was presented for this purpose.

(4) The value of F,p depends on the ratio of H, to H, rather
than on their absolute values. It increases with increas-
ing values of H,/H;, ¢y, 01, and 7, and decreasing val-
ues of Hy, B, and 8. The effect of flattening the slope to
increase the factor of safety decreases in cases of low ¢,
to ¢y ratio. The influence of changing y on F,, values
decreases with increasing P, and §, and decreasing Hy,
values. Unlike the case for rotational failure, F, against
translational failure decreases with the decrease in the
unit weight of the sliding materials that are partly or
wholly submerged below the water table. For dry slopes,
F,p is not sensitive to values of yutilized in this study.

(5) The value of F;p is greater than F,p of the critical
cross-section of the same sliding mass regardless of
slope geometry configurations and the values of the ma-
terial properties. For failure to occur, the back scarp of a
mass including these sections should extend laterally to
decrease the end effect relative to the driving forces un-
til a critical mass width is reached and F;p = 1.0 is mo-
bilized. This means that failure through regular slopes
should have almost the same sliding mass width, which
is equal to the critical mass width. This conclusion is
supported by width regularity of sliding masses de-
scribed for slope failures by several researchers.

(6) The 3D effect, i.e., F3p/F,p values, increases with de-
creasing W/H, and B, and increasing H,/H, and ¢;. The
ratio is not sensitive to values of ¢, 9, v, and Hy. In-
creasing F3p against translational failure with increasing
Oy is not in agreement with reports by several research-
ers of a decrease in the importance of 3D analysis with
an increase in the value of friction angle (¢") for a circu-
lar or log-spiral slip surface through homogenous or
nonhomogenous soils, the shear strength of which is de-
scribed using both friction angle and cohesion.

(7) The ratio of the 3D factor of safety considering seismic
loads (F3peismicy) to the critical cross section factor of
safety without considering them (F,p) was used in this
study to illustrate the combined 3D and seismic effects
on the stability of slopes. For &, of 0.1 or 0.2, the seis-
mic effect rendered the Fipgeismic)/Fap ratio to be lower
than 1.0 even with the relatively high values of H,/H,.
The F3pseismicy/Fap ratio decreases with decreasing 3 and
is not sensitive to values of ¢y;. As a result, for the range
of parameters considered in this study, the value of
Fipseismicy/ Fop 18 geometrically related and practically
does not depend on material properties.
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